Equações elípticas semilineares e quasilineares com potenciais que mudam de sinal

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Oliveira Junior, José Carlos de
Orientador(a): Maia, Liliane de Almeida
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade de Brasília
Brasília
Programa de Pós-Graduação: Pós-Graduação em Matemática
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://hdl.handle.net/11612/473
Resumo: Neste trabalho, consideramos o problema autônomo {(-∆u+V(x)u=f(u) em R^N,@u∈H^1 (R^N)\\{0},)┤ em que N≥3, a função V é não periódica, radialmente simétrica e muda de sinal e a não linearidade f é assintoticamente linear. Além disso, impomos que V possui um limite positivo no infinito e que o espectro do operador L≔-∆+V tem ínfimo negativo. Sob essas condições, baseando-se em interações entre soluções transladadas do problema no infinito associado, é possível mostrar que tal problema satisfaz a geometria do teorema de linking clássico e garantir a existência de uma solução fraca não trivial. Em seguida, estabelecemos a existência de uma solução não trivial para o problema não autônomo {(-∆u+V(x)u=f(x,u) em R^N,@u∈H^1 (R^N)\\{0},)┤ sob hipóteses similares ao problema anterior, admitindo também que f(x,u)=f(|x|,u) dentre outras condições. Aplicamos novamente o teorema de linking para garantir que tal problema possui uma solução não trivial. Por fim, provamos que o problema quasilinear {(-∆u+V(x)u-u∆(u^2)=g(x,u) em R^3,@u∈H^1 (R^3)\\{0},)┤ em que o potencial V muda de sinal, podendo ser não limitado inferiormente, e a não linearidade g(x,u), quando |x|→∞, possui um certo tipo de monotonicidade, possui uma solução não trivial. A existência de tal solução é provada por meio de uma mudança de variável que transforma o problema num problema semilinear, nos permitindo, assim, empregar o teorema do passo da montanha combinado com o lema splitting.