Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Freitas, Gislaine Camila de [UNIFESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de São Paulo
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.unifesp.br/handle/11600/67223
|
Resumo: |
O Agrupamento de Dados é uma tarefa importante em Aprendizado de Máquina. Essa tarefa é realizada geralmente de forma não supervisionada, entretanto, a literatura evidencia que a utilização de informações providas por um supervisor externo pode melhorar a qualidade do agrupamento obtido. Existem diversas técnicas propostas na literatura para resolver esse problema, de heurísticas, meta-heurísticas a métodos exatos. Apesar de algumas terem aspectos similares, a qualidade do agrupamento obtido por elas divergem. Essa característica fez com que o consenso entre essas técnicas se tornasse o principal foco da pesquisa proposta nesse trabalho. Inicialmente, foi realizado um estudo sobre as técnicas de Agrupamento de Dados com Restrições propostas na literatura, evidenciando suas vantagens e desvantagens. Posteriormente foram propostos algoritmos de consenso que consideram as soluções obtidas por essas técnicas. Os experimentos computacionais demonstram que os métodos propostos apresentam melhores resultados em termos de qualidade em relação à quatro modelos da literatura. |