Algoritmos de agrupamento tradicionais versus sistemas de comitê de agrupamentos: análise de dados de expressão gênica

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: NEPOMUCENO, Vilmar Santos
Orientador(a): LUDERMIR, Teresa Bernarda
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/2824
Resumo: Este trabalho investiga o impacto do uso de comitês de agrupamentos para a análise de dados de expressão gênica. Mais especificamente, é realizada uma comparação dos desempenhos obtidos com algoritmos de combinação (comitês) com aqueles dos algoritmos de agrupamento individuais (algoritmos base). Para isso, são utilizados três métodos de comitês de agrupamento mais estabelecidos na literatura: matriz de co-associação, re-rotulagem e votação e comitês baseados em particionamento de grafos. As técnicas de agrupamento individuais escolhidas para realizar a comparação são: k-médias, mistura finita de gaussianas e o algoritmo hierárquico. Além de representarem diferentes paradigmas de agrupamento, estes algoritmos estão sendo muito utilizados no contexto de expressão gênica. Os resultados obtidos indicam que os algoritmos de comitê conseguem recuperar melhor a estrutura real dos dados, quando comparados aos algoritmos individuais. Outro aspecto observado na análise desenvolvida é que os comitês homogêneos conseguem, em geral, um melhor desempenho do que os comitês heterogêneos. De forma geral, os resultados dos experimentos indicam que, tanto os algoritmos individuais, quanto as técnicas de comitê apresentaram pequenas diferenças entre o número de grupos gerados, para os melhores desempenhos, e o número real de classes existentes nos dados