Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Horta, Danilo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-14012014-154211/
|
Resumo: |
Existem bases para as quais os dados são naturalmente representados por mais de uma visão. Por exemplo, imagens podem ser descritas por atributos de cores, textura e forma. Proteínas podem ser caracterizadas pela sequência de aminoácidos e pela representação tridimensional. A unificação das diferentes visões de uma base de dados pode ser problemática porque elas podem não ser comparáveis entre si ou podem apresentar diferentes graus de importância. Esses graus de importância podem, inclusive, se manifestar de maneira local, de acordo com a subestrutura dos dados em questão. Isso motivou o surgimento de algoritmos de agrupamento de dados capazes de lidar com bases multi-representadas (i.e., que possuem mais de uma visão dos dados), como o algoritmo SCAD. Esse algoritmo se mostrou promissor em experimentos relatados na literatura, mas possui problemas críticos identificados neste trabalho que o impedem de funcionar em determinados cenários. Tais problemas foram solucionados por meio da proposição de uma nova versão do algoritmo, denominada ASCAD, fundamentada em provas formais sobre a sua convergência. Foram desenvolvidas versões relacionais do algoritmo ASCAD, capazes de lidar com bases descritas apenas por relações de proximidade entre os objetos. Foi desenvolvido também um índice de validação interna e relativa de agrupamento voltado para dados multi-representados. A avaliação de agrupamento possibilístico e de bi-agrupamento por meio da comparação entre solução encontrada e solução de referência (validação externa) também foi explorada. Algoritmos de bi-agrupamento têm ganhado um interesse crescente da comunidade de análise de expressão gênica. No entanto, pouco se conhece do comportamento e das propriedades das medidas voltadas para validação externa de bi-agrupamento, o que motivou uma análise teórica e empírica dessas medidas. Essa análise mostrou que a maioria das medidas de biagrupamento possui problemas críticos e destacou duas delas como sendo as mais promissoras. Foram inclusas nessa análise três medidas de agrupamento particional não exclusivo, cujo uso na comparação de bi-agrupamentos é possível por meio de uma nova abordagem de avaliação de bi-agrupamento proposta nesta tese. Agrupamento particional não exclusivo faz parte de um domínio mais geral de soluções, i.e., o domínio dos agrupamentos possibilísticos. Observou-se algumas falhas conceituais importantes das medidas de agrupamento possibilístico, o que motivou o desenvolvimento de novas medidas e de uma análise empírica e conceitual envolvendo 34 medidas. Uma das medidas propostas se destacou como sendo a única que apresentou avaliações imparciais com relação ao número de grupos, o valor máximo de similaridade ao comparar a solução ideal encontrada com a solução de referência e avaliações sensíveis às diferenças das soluções em todos os cenários considerados |