Uma Aplicação De Meta-Aprendizagem Nas Cotações Euro/Dólar

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Duarte, Felipe De Almeida [UNIFESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Paulo (UNIFESP)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=6918970
https://repositorio.unifesp.br/handle/11600/52326
Resumo: For the investor, knowing when to buy or sell a asset is a decision of extreme importance to make profits in financial markets. However, the same decision-making process, the investor should choose the ideal model for the study and analysis of the data series worked. Due to the large number of models available, choosing an ideal model often makes the task difficult, especially for inexperienced investors. To assist in such a decision, meta-learning can be an ideal tool, by making suggestions of models through applications in similar past data. This tool has already been used for the problem of algorithm selection and presents good results in the selection of study models of time series. In this work, we seek to use the method of analysis and analysis of time series (concrete euro/dollar quotations), through a ranking algorithm that suggests the best models. The results were satisfactory, presenting good predictions for the suggested models.