Meta-aprendizado para seleção automática de modelos de séries temporais

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: SOUZA, Renata Maria de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/2682
Resumo: Meta-Aprendizado tem crescido nos últimos anos devido ao desenvolvimento de assistentes para seleção de algoritmos, com o desafio de predizer quando um algoritmo de aprendizagem é mais adequado do que outro a partir das características dos problemas abordados. O meta-aprendizado surge originalmente para auxiliar a seleção de algoritmos em problemas de aprendizagem de máquina e mineração de dados, particularmente em classificação e regressão. Em anos recentes, meta-aprendizado tem sido extrapolado para seleção de algoritmos em outros domínios de aplicações, como sistemas de planejamento, otimização, bioinformática e previsão de séries temporais. Nesse trabalho, focamos particularmente, em meta-aprendizado no contexto de previsão de séries temporais que tem sido usado em diferentes contextos para diminuir riscos na tomada de decisão. Estudos foram realizados para seleção de modelos de previsão aplicados às séries anuais da M3-competition. Nesses estudos, diferentes algoritmos foram utilizados no meta-aprendizado como o algoritmo kNN, árvores de decisão e support vector machines. Os resultados mostraram que os algoritmos de aprendizado de fato são capazes de predizer os melhores modelos de previsão a partir das características das séries temporais