Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Oliveira, Alexandre Passos
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
Bacci, Leandro |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Sergipe
|
Programa de Pós-Graduação: |
Pós-Graduação em Agricultura e Biodiversidade
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://ri.ufs.br/handle/riufs/3030
|
Resumo: |
Sitophilus zeamais is a global important pest-insect, known for the losses that it causes during production and grain storage. One of the main problems caused by synthetic pesticides use is the development of resistant insect populations. Essential oils of plants have been considered a promising alternative to the conventional management of pests insects, however, its direct application has limitations due to the instability of its composition and high volatility. According to this, the technology of nanoformulations production can increase the potential of essential oil use, and its compounds, by increasing the efficiency, and stability of these compounds. The aim of this study was evaluate the lethal and sub lethal effects of Lippia sidoides essential oil, its majoritary compound (thymol), and nanoformulations of essential oil based prototypes, under S. zeamais populations (N = 5) from different regions of Brazil. The chemical composition of the essential oil, and nanoformulation was analyzed by GC/MS/DIC. The completely random design consisted in four replications for each combination of treatment x populations of S. zeamais. Bioassays of acute toxicity were conducted in Petri dishes (6 x 1,5 cm) with 10 unsexed adults. The lethal doses (LD50 and LD90), and the lethal time (LT50) were obtained through topic application bioassays. To the nanoformulation storage efficiency was used the LD95. On the population growth, and grain consume bioassays were used different concentrations of nanoformulations to mass grain treatment. The major compound present in the L. sidoides essential oil was thymol (68.5%). During nanoformulation storage, the concentration of these compound increased, getting to 82% of the essential oil composition. L. sidoides essential oil lethal doses, needed to kill 50% of S. zeamais populations, vary between 7.1 to 19.9 μg mg-1. Jacarezinho, and Maracaju populations were, respectively, the most tolerant and susceptible populations to L. sidoides essential oil. Intermediates susceptibilities were observed to Aracaju, Rio Branco, and Sete Lagoas populations. To thymol LD50 were observed variations between 17.1 to 25.7 μg mg-1. To nanoformulations prototypes (18%) containing L. sidoides essential oil, and thymol were observed LD50 variations between 26.4 to 36 e 20.8 a 27.7 μg mg-1, respectively. L. sidoides essential oil, thymol, and their nanoformulations had a fast action under S. zeamais populations. Lethal times needed to kill 50% of the population vary between 5.8 to 62 hours. In all of those cases, the nanoformulations took longer to cause the same mortality. The nanoformulations caused mortalities higher than 80% of S. zeamais populations of over 210 storage days. Nanoformulations increasing concentrations resulted on intrinsic tax (ri), and grain consume reduction of S. zeamais populations. This study prove that nanoformulations of L. sidoides oil essential based prototypes and its majoritary compound are promising alternatives to the management of S. zeamais once these demonstrated high efficacy, low liberation of the substances, and good storage stability. |