Inferência de personalidade a partir de textos de rede social utilizando um léxico afetivo em português brasileiro

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Machado, Antonio Aliberte de Andrade lattes
Orientador(a): Nunes, Maria Augusta Silveira Netto
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Sergipe
Programa de Pós-Graduação: Pós-Graduação em Ciência da Computação
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://ri.ufs.br/handle/riufs/3375
Resumo: This máster thesis presents research on the correlation of lexical information in texts in Portuguese with personality characteristics and model Big Five facets of IPIP-NEO. It elaborates, especially, on the use of classes of affective feelings LIWC lexicon. The main goal of this work is to relate the factors of the Big Five model and the IPIP-NEO facets of IPIP-NEO 120 and TIPI questionnaires with the posts of Facebook social network. For this, a tool called Personalitatem Lexicon was built. The methodology used to achieve the research objectives was bibliographical which were researched and analyzed the work done on personality inferences from texts. The result of the experiment shows that the inference of personality from the questionnaires have more precise conclusions for the same contain specific questions and answers to measure such characteristic. Already personality inference for posts is more susceptible to noise because not all experienced situations are exposed on the social network. However, inference of personality posts is possible, but the results are the moments