Métricas com curvatura de Ricci positiva via deformações conformes em variedades de dimensões 3 e 4

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Gois, Alan Santos lattes
Orientador(a): Santos, Almir Rogério Silva
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Sergipe
Programa de Pós-Graduação: Pós-Graduação em Matemática
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://ri.ufs.br/handle/riufs/5799
Resumo: The main objective of this work is to show the existence of metrics with positive Ricci curvature in the class as a Riemannian metric with positive scalar curvature on compact manifolds of dimension 3 and 4. Catino-Djadli [ 3 ] and Gursky-Viaclovsky [ 13 ] showed that bends climbing and Ricci of a metric g satisfies an integral inequality in a three-dimensional compact manifold, then g is according to some metric of positive Ricci curvature. In the first article the authors work in three-dimensional manifolds and second manifolds 4