Seleção de variáveis usando o algoritmo genético

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Pinto, Matheus Henrique Tavares
Orientador(a): Pereira, André Gustavo Campos
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA E ESTATÍSTICA
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
AGE
AIC
Link de acesso: https://repositorio.ufrn.br/handle/123456789/48411
Resumo: Muitos problemas práticos envolvendo modelos lineares em algum momento necessitam de uma redução do número de varíaveis envolvidas, seja pelo custo envolvido em se trabalhar com muitas variáveis, seja por que uma certa quantidade de variáveis já explica satisfatoriamente o problema abordado. Podemos citar entre outras técnicas a análise de componentes principais, a seleção do melhor subconjunto de variáveis, a seleção progressiva de variáveis, etc. Nesse trabalho apresentaremos como proceder a seleção de variáveis de um modelo linear utilizando o algoritmo genético . Além disso, mostramos que o algoritmo genético elitista (AGE) converge para o conjunto das populações contendo uma solução do problema de otimização considerado, ao mesmo tempo, mostramos como usar a convergência do AGE para obter soluções para o problema de seleção de variáveis.