Estudo de parâmetros ótimos em algoritmos genéticos elitistas

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Carvalho, Wanderson Laerte de Oliveira
Orientador(a): Oliveira, Roberto Teodoro Gurgel de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA E ESTATÍSTICA
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/24067
Resumo: O algoritmo genético é um processo iterativo de busca, utilizado para encontraro máximo global no domı́nio de funções não convencionais. Esse algoritmo se baseiaem fundamentos naturalistas, evoluindo uma amostra de candidatos a máximo globala cada iteração. Essa evolução é consequência de três operadores (Seleção, Mutaçãoe Cruzamento) que vasculham o domı́nio da função e ao mesmo tempo selecionam osmelhores candidatos obtidos. Nesse estudo, apresentaremos uma cadeia de Markovque modela a evolução desse algoritmo, e demonstraremos algumas propriedades dessacadeia que justificam a convergência do algoritmo. Realizaremos uma simulação paramodelar o efeito da parametrização do algoritmo em sua velocidade de convergência,estimada pelo número de iterações até obtenção do máximo global. Nessas simulaçõesobservaremos esse efeito em funções: unidimensionais, bidimensionais, com um únicomáximo local (o máximo global) e com vários máximos locais. Finalmente, esse tra-balho apresenta resultados que questionam a relevância do operador cruzamento nasfunções estudadas e argumentos para acreditar que o operador mutação otimiza a ve-locidade de convergência do algoritmo quando ocorre com probabilidade de mutaçãopróxima a 0, 2).