Detecção e tipagem de arbovírus (dengue, zika e chikungunya) por infravermelho em conjunto com técnicas de análise multivariada

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Santos, Marfran Claudino Domingos dos
Orientador(a): Lima, Kassio Michell Gomes de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/25099
Resumo: O objetivo dos estudos reportados nesta dissertação é avaliar o uso da Espectroscopia de infravermelho em conjunto com técnicas quimiométricas de análise multivariada, como uma nova ferramenta para detecção e tipagem de arbovírus presentes em amostras clínicas. Nesta dissertação constam 4 artigos: 1 artigo de revisão e 3 artigos de pesquisa. O artigo de revisão faz um levantamento das principais técnicas espectroscópicas e técnicas de análise multivariada utilizadas em estudos no campo da virologia nos últimos 10 anos, bem como as vantagens destas, frente às técnicas padrão. No primeiro artigo de pesquisa, modelos multivariados baseados em análise discriminante foram construídos com o objetivo de discriminar quantitativamente o sorotipo DENV-3 presente em quatro diferentes concentrações em amostras de soro e sangue. No segundo estudo, técnicas de seleção de variáveis foram aplicadas com o objetivo de discriminar amostras de soro e sangue infectadas em laboratório, e ainda, predizer qual o sorotipo é responsável pela infecção. No terceiro estudo, foi avaliada a capacidade da técnica em discriminar entre 4 grupos de amostras: dengue (amostras de sangue de pacientes diagnosticados com dengue), Chikungunya (amostras de sangue de pacientes diagnosticados com Chikungunya), Zika (amostras de sangue de pacientes diagnosticados com Zika) e saudáveis (amostras de sangue de voluntários saudáveis). Os algoritmos de análise multivariada utilizados foram Análise de Componentes Principais-Análise Discriminante Linear (PCA-LDA), Algoritmo de Projeções Sucessivas-Análise Discriminante Linear (SPA-LDA) e Algoritmo Genético-Análise Discriminante Linear (GA-LDA). O desempenho da técnica foi avaliado através de cálculos de sensibilidade, especificidade, valores preditivos positivos e negativos, índice de Youden e razão de verossimilhança positiva e negativa. Os resultados foram animadores, e mostraram que a espectroscopia utilizada em conjunto com técnicas de análise multivariada tem o potencial de detectar e identificar as variações provocadas pela presença do vírus da dengue em amostras biológicas, e fornecer resultados rápidos em comparação às técnicas de diagnóstico utilizadas em rotinas clínicas.