Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Santos, David Coelho dos |
Orientador(a): |
Xavier Júnior, João Carlos |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE SOFTWARE
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufrn.br/jspui/handle/123456789/26342
|
Resumo: |
Problemas em sistemas críticos e dispositivos devem ser tratados com agilidade e de maneira eficiente. Períodos de inatividade podem custar caro e ter consequências bastante significativas em diversos contextos. É fundamental que sistemas de informação estejam sempre disponíveis e sejam confiáveis. Embora a maioria das ferramentas de monitoramento de infraestrutura consigam identificar falhas, é importante, sobretudo, obter conhecimento a partir de dados coletados dessa infraestrutura nas mais diversas situações, incluindo falhas e, sobretudo, situações que antecedem tais falhas. Esse conhecimento torna-se muito mais importante à medida que, deseja-se prever possíveis comportamentos anômalos a partir de dados de logs de monitoramento de sistemas e equipamentos e, isto posto, promover a realização ações de suporte proativas visando garantir disponibilidade e tolerância a falhas. Visando atacar esses desafios, este trabalho apresenta o IMAM, uma ferramenta capaz de monitorar a disponibilidade de sistemas e coletar, armazenar e analisar, através de técnicas de Aprendizado de Máquina, registros de logs de monitoramento de infraestruturas críticas baseadas em IoT. |