Novas estratégias para conserto de soluções degeneradas no algoritmo k-means

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Dantas, Nielsen Castelo Damasceno
Orientador(a): Aloise, Daniel
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/22695
Resumo: O k-means é um algoritmo benchmark bastante utilizado na área de mineração de dados.Ele pertence à grande categoria de heurísticas com base em etapas delocalização-alocação que, alternadamente, localiza centros de cluster e atribuípontos de dados a eles até que nenhuma melhoria seja possível. Tais heurísticassão conhecidas por sofrer de um fenômeno chamado de degeneração, em que,alguns dos clusters ficam vazios, e, portanto, fora de uso. Nesta tese, propõe-sevarias comparações e uma série de estratégias para contornar soluçõesdegeneradas durante a execução de k-means. Os experimentos computacionaisdemonstram que essas estratégias são eficientes e levam a melhoressoluções de agrupamento na grande maioria dos casos testados.