Proposta de implementação em hardware para o algoritmo non-local means.
Ano de defesa: | 2012 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal da Paraíba
BR Informática Programa de Pós Graduação em Informática UFPB |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpb.br/jspui/handle/tede/6069 |
Resumo: | A digital image is a representation of a two-dimensional image using binary numbers coded to allow its storage, transfer, printing, reproduction and its processingby electronic means. It is formed by a set of points defined by numerical values(grayscale), in which each point represents a pixel. In any grayscale digital image, the measurement of the gray level observed in each pixel is subject to alterations. These alterations, called noise, are due to the random nature of the photons counting process by sensors used for image capture. The noise may be amplified by virtue of some digital corrections, or by image processing software such as tools to increase contrast. Image denoising with the goal to recover or estimate the original image is still one of the most fundamental and widely studied problems related to image processing. In many areas, such as aerospace and medical image analysis, noise removal is a key step to improve the quality of results. Among the alternatives for this purpose, the method proposed by Buades (2005), known as Non-Local Means (NLM), represents the state of the art. Although quite effective for removing noise, the NLM is too slow to be performed in a practical manner. Its high computational complexity is caused by the need of weights calculated for all the image pixels during the filtering of each pixel, resulting in quadratic complexity relative to the number of the image pixels. The weights are obtained by calculating the difference between the neighborhoods corresponding to each pixel. Many applications have timing requirements so that their results are useful. This work proposes a hardware implementation for the Non-Local Means algorithm for image denoising with a lower computation time using pipelines, hardware parallelism and piecewise linear approximation. It is about 290 times faster than the original nonlocal means algorithm, yet produces comparable results in terms of mean-squared error (MSE) and perceptual image quality. |