Uma metodologia para definição do número de grupos e do conjunto de centros iniciais para algoritmos particionais

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Silva, Huliane Medeiros da
Orientador(a): Bedregal, Benjamin Rene Callejas
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufrn.br/handle/123456789/46634
Resumo: O agrupamento de dados consiste em agrupar objetos semelhantes de acordo com alguma característica. Na literatura, existem diversos algoritmos de agrupamento, dentre os quais destaca-se o algoritmo Fuzzy C-Means (FCM), um dos mais discutidos e utilizados em diferentes aplicações. Embora seja um método de agrupamento simples e fácil de manipular, o algoritmo FCM requer como parâmetro inicial o número de grupos. No geral, essa informação é desconhecida, a priori, e se torna um problema relevante no processo de análise de agrupamento de dados. Além disso, o desenho do algoritmo FCM depende fortemente da seleção dos centros iniciais dos grupos. Normalmente, a escolha do conjunto de centros iniciais é feita aleatoriamente, o que pode comprometer o desempenho do FCM e, consequentemente, o processo de análise de agrupamento. Neste contexto, este trabalho propõe uma nova metodologia pra determinar o número de grupos e o conjunto de centros iniciais de algoritmos particionais, usando como estudo de caso o algoritmo FCM e algumas de suas variantes. A ideia é usar um subconjunto dos dados originais para definir o número de grupos e determinar o conjunto de centros iniciais através de um método baseado em funções do tipo média. Com essa nova metodologia, pretende-se reduzir os efeitos colaterais da fase de definição de grupos, possivelmente tornando mais rápido o tempo de processamento e diminuindo o custo computacional. Para avaliar a metodologia proposta, serão utilizados diferentes índices de validação de agrupamento, capazes de avaliar a qualidade dos agrupamentos obtidos pelo algoritmo FCM e algumas de suas variantes, quando aplicados a diferentes bases de dados.