Classificador máquina de suporte vetorial com análise de Fourier aplicada em dados de EEG e EMG

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Carvalho, Jhonnata Bezerra de
Orientador(a): Pinho, André Luis Santos de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA E ESTATÍSTICA
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
SVM
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/20964
Resumo: O classificador Máquina de Suporte Vetorial, que vem do termo em inglês \textit{Support Vector Machine}, é utilizado em diversos problemas em várias áreas do conhecimento. Basicamente o método utilizado nesse classificador é encontrar o hiperplano que maximiza a distância entre os grupos, para aumentar o poder de generalização do classificador. Neste trabalho, são tratados alguns problemas de classificação binária com dados obtidos através da eletroencefalografia (EEG) e eletromiografia (EMG), utilizando a Máquina de Suporte Vetorial com algumas técnicas complementares, destacadas a seguir como: Análise de Componentes Principais para a identificação de regiões ativas do cérebro, o método do periodograma que é obtido através da Análise de Fourier, para ajudar a discriminar os grupos e a suavização por Médias Móveis Simples para a redução dos ruídos existentes nos dados. Foram desenvolvidas duas funções no $software$ \textbf{R}, para a realização das tarefas de treinamento e classificação. Além disso, foram propostos 2 sistemas de pesos e uma medida sumarizadora para auxiliar na decisão do grupo pertencente. A aplicação dessas técnicas, pesos e a medida sumarizadora no classificador, mostraram resultados bastantes satisfatórios, em que os melhores resultados encontrados foram, uma taxa média de acerto de 95,31\% para dados de estímulos visuais, 100\% de classificação correta para dados de epilepsia e taxas de acerto de 91,22\% e 96,89\% para dados de movimentos de objetos para dois indivíduos.