Identificação automática de motociclistas através de processamento de imagens de vídeo de tráfego

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Felicio, Adriano Belletti
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/18/18144/tde-12052020-170835/
Resumo: Devido ao grande crescimento de motocicletas na frota urbana e o crescimento do estudo sobre seu comportamento e de como este veículo afeta o fluxo de tráfego torna-se necessário o desenvolvimento de ferramentas e técnicas diferentes das convencionais para identificar sua presença no trânsito e ser capaz de extrair suas informações. O trabalho em questão tenta contribuir para o estudo sobre este tipo de veículo, gerando um banco de imagens de motocicletas, desenvolvendo e calibrando um classificador de motocicleta e analisando o comportamento destes condutores através da utilização conjunta de um sistema de detecção automática de veículos em imagens de vídeos com o classificador desenvolvido. O classificador desenvolvido combina as técnicas de LBP para criar os vetores de características e a técnica de classificação LinearSVC para realizar as previsões. Desta forma o classificador de veículos do tipo motocicleta desenvolvido nesta pesquisa pode classificar as imagens de veículos extraídos de vídeos de monitoramento entre duas classes de motocicletas e não-motocicletas com uma precisão e uma exatidão superior a 0,9. A análise exploratória realizada nos dados obtidos da utilização conjunta de um sistema de detecção automática de veículos em imagens de vídeos como classificador desenvolvido evidenciou uma preferência por parte das motocicletas em trafegarem na faixa da direita, mais precisamente no seu 1/3 de faixa mais próxima ao acostamento. O conjunto de dados obtidos permitiu observar algumas situações muito interessantes como as manobras de mudanças de faixa e manobras de ultrapassagem.