Detecção e diagnóstico de falhas em rolamentos, sob diferentes cargas e velocidades, utilizando Redes Neurais Convolucionais

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Santos, Wallisson Fernandes Martins Dos
Orientador(a): Araújo, Fabio Meneghetti Ugulino de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Programa de Pós-Graduação: Programa de Pós-graduação em Engenharia Mecatrônica
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufrn.br/handle/123456789/55037
Resumo: Com o aumento da complexidade e dos custos dos sistemas industriais, medidas de gestão que visam impedir ou mitigar a perda de confiabilidade, diminuição da produtividade e riscos de segurança, provocados por anormalidades de processo e falhas de componentes, tornam-se cada vez mais importantes. Nesse contexto, a Inteligência Artificial (IA) vem se consolidando como um meio eficaz e desafiador no processo de monitoramento, detecção e diagnóstico de falhas em equipamentos e sistemas industriais. Dentre os equipamentos, que são frequentemente objeto de estudos, destacam-se os rolamentos, que são componentes mecânicos críticos das máquinas rotativas. O monitoramento de vibração é a técnica mais amplamente utilizada para detectar, localizar e distinguir falhas em rolamentos. Diante do desempenho eficiente e crescente das técnicas IA e da importância dos rolamentos nos processos industriais, este trabalho implementa uma Rede Neural Convolucional (CNN) para detecção e diagnóstico de falhas em rolamentos, sob diferentes cargas e velocidades no motor e diferentes tipos e profundidade de falhas no rolamento. Para o desenvolvimento da abordagem proposta, foi utilizado o banco de dados de ensaios em rolamentos da Case Western Reserve University (CWRU). Os sinais de vibração brutos foram pré-processados através da Transformada Wavelet Continua (TWC) e convertidos em imagens, as quais foram alimentadas diretamente na estrutura CNN desenvolvida. Quando comparado com outros métodos baseados em CNN que utilizaram o mesmo banco de dados, a abordagem proposta demonstrou superioridade ou foi pelo menos tão bem- sucedido quanto, atingindo uma precisão de 97,7% quando testado com arquivos em condições operacionais diferentes das condições de treinamento.