Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Alves, Lucas Gabriel Ferreira |
Orientador(a): |
Rigo, Sandro José |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade do Vale do Rio dos Sinos
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Computação Aplicada
|
Departamento: |
Escola Politécnica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://www.repositorio.jesuita.org.br/handle/UNISINOS/12441
|
Resumo: |
Abordagens usando aprendizagem de máquina estão sendo cada vez mais utilizadas como apoio em atividades na Geociência. Dentre as aplicações possíveis, algumas são voltadas à interpretação de dados sísmicos em tarefas tais como identificação de feições ou falhas. Em particular, este trabalho auxilia na interpretação sísmica trazendo ganhos ao diminuir o trabalho manual e o tempo gasto ao se realizar o estudo da área geológica. Recursos de aprendizado supervisionado com uso de redes de aprendizado profundo têm sido identificados na literatura com bons resultados para este contexto, em atividades de segmentação. Este trabalho descreve o desenvolvimento de um estudo sobre métodos para apoio na detecção de fraturas em sísmica, a proposição de uma abordagem para esta detecção usando recursos de aprendizado supervisionado, bem como experimentos de avaliação. Com base nesse estudo e em experimentos preliminares, foi proposta e avaliada uma arquitetura de rede do tipo encoder-decoder, que atua na segmentação de imagens identificando as falhas. Esta arquitetura tem como base as redes DNFS, StNet e FaultNet. O trabalho também gerou contribuições na produção e anotação de um dataset com dados anotados de falhas em sísmica e sua disponibilização para experimentos. O estudo prevê como atividades futuras a identificação de falhas ou fraturas criticamente estressadas de acordo com o campo tensional. |