Utilização de técnicas de aprendizado de máquina para predição de crises epiléticas

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Santos, Kelyson Nunes dos
Orientador(a): Venâncio Neto, Augusto José
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/24209
Resumo: A predição de eventos a partir de dados neurofisiológicos possui muitas variáveis que devem ser analisadas em diferentes momentos, desde a aquisição e registro de dados até o pós-processamento dos mesmos. Assim, a escolha do algoritmo que irá processar esses dados é uma etapa muito importante, pois o tempo de processamento e a acurácia do resultado são fatores determinantes para uma ferramenta de auxílio de diagnóstico. A tarefa de classificação e predição também auxilia no entendimento das interações realizadas pelas redes de células cerebrais. Este trabalho realiza o estudo de técnicas de Aprendizado de Máquina com diferentes características para analisar seu impacto na tarefa de predição de eventos a partir de dados neurofisiológicos e propõe o uso de comitês de classificadores de forma a otimizar o desempenho da tarefa de predição através do uso de técnicas de baixo custo computacional