Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Godoy, Ricardo Vilela de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/18/18162/tde-31012022-114038/
|
Resumo: |
A epilepsia é uma das doenças cerebrais mais comuns e incapacitantes, afetando cerca de 1% da população mundial. Esta doença ocasiona sintomas chamados de crises epilépticas devido à atividade cerebral anormal, as quais podem variar de pequenos desvios de atenção à perda total de consciência. Dado o caráter inesperado de uma crise epiléptica, sua predição acarretaria em uma melhoria da qualidade de vida do paciente, bem como ajudaria no tratamento. Um método auxiliar amplamente utilizado para realizar o diagnóstico clínico da epilepsia, bem como seu monitoramento, é o eletroencefalograma (EEG). Os sinais de EEG são obtidos por meio do posicionamento de eletrodos no couro cabeludo dos pacientes e então aferindo-se a diferença de potencial entre eles gerado pela atividade cerebral. A tarefa de predizer uma crise epiléptica pode ser definida como classificar e diferenciar dois períodos distintos do EEG de um paciente epiléptico: o período pré-ictal e o período interictal. O uso de técnicas de Deep Learning (DL) são muito promissoras para essa tarefa, uma vez que representam o estado da arte para várias outras tarefas de classificação de dados temporais. Este trabalho tem como objetivo desenvolver e implementar algoritmos de DL aplicados a sinais de EEG para predizer crises epilépticas. O algoritmo deve detectar e diferenciar o período pré-ictal do interictal com precisão e antecedência. Para isso, será utilizado o conjunto de dados publicamente disponíveis do CHB-MIT. Ainda, este trabalho preparará para trabalhos futuros o banco de dados do Hospital das Clínicas da FMRPUSP, que contém sinais de EEG de mais de 1.820 pacientes. Este trabalho implementou cinco arquiteturas de DL diferentes para predição de crises: redes MLP, CNN, Bi-LSTM, Transformer e Vision Transformer. A fim de adaptar as duas últimas para uso com sinais temporais multi-canais, área ainda inexplorada pelas mesmas, foram desenvolvidos dois modelos denominados de Temporal Multi-channel Transformer (TMC-T) e Temporal Multi-channel Vision Transformer (TMC-ViT). O modelo TMC-ViT aqui desenvolvido atingiu os melhores resultados, com acurácia de 98,95% e taxa de falso alarme de 0,0007 por hora, superando as redes CNN que representam o estado da arte nessa tarefa necessitando de um menor tempo de treinamento. Ainda, os resultados obtidos esclareceram dúvidas em aberto quanto à definição clínica do período pré-ictal e em relação ao balanceamento dos dados. |