Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Pinheiro, Daniel Nobre |
Orientador(a): |
Aloise, Daniel |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufrn.br/handle/123456789/31934
|
Resumo: |
O modelo dos k-medoides é um dos métodos de agrupamento de dados mais populares na literatura. Neste trabalho, propomos o Problema Convexo Fuzzy dos k-Medoides (CFKM), que não apenas possibilita que um objeto seja atribuído simultaneamente a diferentes grupos, mas também permite que um grupo seja representado por múltiplos medoides. O modelo proposto é convexo e consequentemente sua resolução é robusta à inicialização. Para verificar a importância do CFKM, comparamos com outros dois modelos fuzzy de k-medoides: o Problema Fuzzy dos k-Medoides (FKM) e o Problema de agrupamento de dados Fuzzy com Múltiplos Medoides (FMMdd), ambos resolvidos por meio de heurísticas devido à sua complexidade computacional. Os experimentos realizados tanto com dados sintéticos como com dados reais, assim como uma pesquisa com usuários, revelam que o CFKM não só é mais robusto à escolha de parâmetros de modelos fuzzy, como também é o único capaz de revelar aspectos importantes em dados inerentemente fuzzy. |