Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
RODRIGUES, Anny Kerollayny Gomes |
Orientador(a): |
OSPINA MARTÍNEZ, Raydonal |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso embargado |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Estatistica
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/35328
|
Resumo: |
Em muitas áreas da ciência, conjuntos de dados e procedimentos estatísticos são frequentemente afetados por valores ausentes (missing values). Na análise de agrupamento, a falta de dados pode prejudicar a formação dos grupos. Muitos métodos de agrupamento para dados incompletos presentes na literatura não levam em consideração os pesos ou a relevância das variáveis na formação dos grupos clusters. Este trabalho tem como objetivo propor e avaliar o método de agrupamento de núcleos Fuzzy C-means com Kernelização da Métrica via distâncias adaptativas locais (VKFCM-K-LP) sob três tipos de estratégias para dados faltantes. A primeira estratégia denominada como Estratégia de Dados Completos (EDC ou Whole Data Strategy), realiza o agrupamento apenas com o conjunto de dados completos, ou seja, nesta estratégia as observações ausentes são excluídas da análise. A EDC pode ser aplicada no agrupamento desde que os valores ausentes não ultrapassem a porcentagem de 25% de todos os valores observados. A segunda abordagem usa a estratégia de distância parcial (EDP ou Partial Distance Strategy), onde são calculadas as distâncias parciais entre todos os dados disponíveis e, em seguida, reescalonadas pela recíproca da proporção dos valores observados. A terceira técnica, Estratégia de Conclusão Ótima (ECO ou Optimal Completion Strategy), calcula valores ausentes de forma iterativa como variáveis auxiliares na otimização de uma função objetivo. Para a avaliação do método VKFCM-K-LP com as estratégias EDC, EDP e ECO, foram utilizados conjuntos de dados com 5%, 10%, 15% e 20% de valores ofaltantes. Os resultados do agrupamento foram analisados de acordo com as medições CR, FM e OERC. O melhor desempenho do agrupamento foi obtido pelas estratégias EDP e ECO. Nos grupos com a abordagem ECO, novas bases de dados foram derivadas e os valores faltantes foram estimados no processo de otimização. Os resultados do agrupamento com a estratégia ECO apresentaram desempenhos superiores quando comparados aos grupos de resultados obtidos a partir do conjunto de dados em que os valores faltantes foram imputados pela média e mediana dos valores observados. |