Applications and algorithms for two-stage robust linear optimization

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Silva, Marco Aurélio Costa da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia de Sistemas e Computação
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11422/13168
Resumo: The research scope of this thesis is two-stage robust linear optimization. We are interested in investigating algorithms that can explore its structure and also on adding alternatives to mitigate conservatism inherent to a robust solution. We develop algorithms that incorporate these alternatives and are customized to work with rather medium or large scale instances of problems. By doing this we experiment a holistic approach to conservatism in robust linear optimization and bring together the most recent advances in areas such as datadriven robust optimization, distributionally robust optimization and adaptive robust optimization. We apply these algorithms in defined applications of the network design/loading problem, the scheduling problem, a min-max-min combinatorial problem and the airline fleet assignment problem. We show how the algorithms developed improve performance when compared to previous implementations