Deep learning for corpus callosum segmentation in brain magnetic resonance images

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Silva, Flávio Henrique Schuindt da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia de Sistemas e Computação
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
MRI
Link de acesso: http://hdl.handle.net/11422/13035
Resumo: In this work we present a novel method to segment Corpus Callosum in Magnetic Resonance Images (MRI) using U-Net, a Fully Convolutional Neural Network. We trained the U-Net using two public datasets and evaluated the trained model in a test set also obtained from these two public datasets. Results are obtained making comparisons using the Structural Similarity Index (SSIM) and Dice Coefficient between the Ground Truth and the Predicted image.