[en] CONVOLUTIONAL NETWORKS APPLIED TO SEMANTIC SEGMENTATION OF SEISMIC IMAGES
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54148&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54148&idi=2 http://doi.org/10.17771/PUCRio.acad.54148 |
Resumo: | [pt] A partir de melhorias incrementais em uma conhecida rede neural convolucional (U-Net), diferentes técnicas são avaliadas quanto às suas performances na tarefa de segmentação semântica em imagens sísmicas. Mais especificamente, procura-se a identificação e delineamento de estruturas salinas no subsolo, o que é de grande relevância na indústria de óleo e gás para a exploração de petróleo em camadas pré-sal, por exemplo. Além disso, os desafios apresentados no tratamento destas imagens sísmicas se assemelham em muito aos encontrados em tarefas de áreas médicas como identificação de tumores e segmentação de tecidos, o que torna o estudo da tarefa em questão ainda mais valioso. Este trabalho pretende sugerir uma metodologia adequada de abordagem à tarefa e produzir redes neurais capazes de segmentar imagens sísmicas com bons resultados dentro das métricas utilizadas. Para alcançar estes objetivos, diferentes estruturas de redes, transferência de aprendizado e técnicas de aumentação de dados são testadas em dois datasets com diferentes níveis de complexidade. |