Social tag prediction: resource-centered approaches for broad folksonomie
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal do Rio de Janeiro
Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia de Sistemas e Computação UFRJ |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/11422/13147 |
Resumo: | This work addresses the problem of how to predict tags that will be assigned by users in Social Tagging Systems. It is widely known that tag prediction functionality helps promote system usability and increase the quality of the tag vocabulary in use. With that in mind, we verify the difference in performance of several label ranking techniques on two datasets, which differ from each other in several key metrics such as the average number of tags per resource, tag vocabulary length, total number of resources, etc. We also analyze a specific label ranking technique, namely MIMLSVM. We verify whether it generalizes to dense text representations in addition to traditional sparse ones. Experiments are conducted on the two datasets and results are analyzed. |