Relevance, novelty, diversity and personalization in tag recommendation

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Fabiano Muniz Belem
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/ESBF-B2LFAX
Resumo: The design and evaluation of tag recommendation methods have historically focused on maximizing the relevance of the suggested tags for a given object, such as a movie or a song. However, relevance by itself may not be enough to guarantee recommendation usefulness. In this dissertation, we aim at proposing novel solutions that effectively address multiple aspects related to the tag recommendation problem, notably, relevance, novelty, diversity, and personalization. Towards that goal, we (1) propose and combine various tag quality attributes by means of heuristics and learning-to-rank (L2R) techniques, and (2) extend our best methods to address personalization, novelty (tag's specificity), and diversity (topic coverage), considering different scenarios of interest. Our evaluation, performed with data from five Web 2.0 applications, demonstrates the effectiveness of our new methods, and attest the viability to increase novelty and diversity with only a slight impact on relevance.