Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
SILVA, Icaman Botelho Viegas da |
Orientador(a): |
ADEODATO, Paulo Jorge Leitão |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/2274
|
Resumo: |
Classificadores têm sido largamente aplicados nos mais diversos campos científicos e industriais, em geral obtendo bons desempenhos. Entretanto, quando aplicados a problemas cuja quantidade de dados disponível para o treinamento é limitada (bases de dados pequenas) ou quando estes dados apresentam um desbalanceamento entre as classes (bases de dados desbalanceadas), a maioria dos classificadores obtém um desempenho pobre. O poder de generalização do classificador é reduzido quando bases de dados pequenas são utilizadas durante o processo de treinamento, enquanto que em bases de dados desbalanceadas, as classes com maior representatividade e menor importância tendem a ser favorecidas. Inerentes a diversos problemas do mundo real, conjuntos de dados pequenos e desbalanceados representam uma limitação a ser superada por algoritmos de aprendizagem para produção de classificadores precisos e confiáveis. Neste trabalho é proposta uma abordagem baseada na adição de ruído Gaussiano durante o processo de treinamento de uma rede neural MultiLayer Perceptron (MLP) com o intuito de contornar as limitações referentes às bases de dados pequenas e/ou desbalanceadas, possibilitando a rede neural obter um alto poder de generalização A metodologia proposta pode ser dividida em duas etapas principais. Na primeira, um estudo acerca da correlação entre as variáveis é realizado. Este estudo envolve avaliar a correlação entre as variáveis por meio do coeficiente de correlação de Pearson e a descorrelação das variáveis através do método Análise de Componentes Principais (ACP). Na segunda, ruídos derivados a partir de uma distribuição Gaussiana são inseridos nas variáveis de entrada. Para validar a abordagem proposta foram utilizadas três bases públicas de um conhecido benchmark da comunidade de redes neurais, Proben1. Os resultados experimentais indicam que a abordagem proposta obtém um desempenho estatisticamente melhor (95% de confiança) que o método de treinamento convencional, principalmente quando utilizado o método PCA para descorrelação das variáveis antes da aplicação de ruído |