Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Duque Marques, Tiago |
Orientador(a): |
Simis, Aron |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/7619
|
Resumo: |
Nesta dissertação de mestrado vamos apresentar métodos da aproximação de números algébricos por racionais que são usados para provar resultados de finitude em geometria Diofantina. Faremos isto através do teorema de Roth e de sua generalização a dimensões superiores, o teorema do subespaçoo de Schmidt; eles permitem demonstrar quase todos os resultados sobre o conjunto de pontos inteiros sobre curvas algébricas, ilustraremos isso com uma nova prova do famoso teorema de Siegel, dada recentemente por P. Corvaja e U. Zannier. |