Em torno do teorema de Roth

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Duque Marques, Tiago
Orientador(a): Simis, Aron
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/7619
Resumo: Nesta dissertação de mestrado vamos apresentar métodos da aproximação de números algébricos por racionais que são usados para provar resultados de finitude em geometria Diofantina. Faremos isto através do teorema de Roth e de sua generalização a dimensões superiores, o teorema do subespaçoo de Schmidt; eles permitem demonstrar quase todos os resultados sobre o conjunto de pontos inteiros sobre curvas algébricas, ilustraremos isso com uma nova prova do famoso teorema de Siegel, dada recentemente por P. Corvaja e U. Zannier.