Framework para Detecção de Anomalias em Bases de Folha de Pagamento Baseado em Mapas Auto-Organizáveis”

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: ANDRADE, Anderson de Souza
Orientador(a): OLIVEIRA, Adriano Lorena Inácio de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
SOM
Link de acesso: https://repositorio.ufpe.br/handle/123456789/11492
Resumo: O aumento na complexidade do ambiente de negócios e o acirramento da competição implicam a necessidade de informações para tomada de decisão em um espaço de tempo cada vez menor. Por outro lado, sistemas de informação mais abrangentes e complexos geram cada vez mais dados, tornando inviável a atividade de auditoria não assistida por métodos computacionais. As técnicas de inteligência artificial, particularmente aprendizagem de máquina, estão entre as mais apropriadas para lidar com esse tipo de problema. Dentre as técnicas de aprendizagem de máquina, as redes neurais artificiais vêm desempenhando um papel comprovadamente eficaz como ferramenta de apoio a atividade de auditoria. Diante desse cenário e alinhado ao estado da arte no uso da tecnologia da informação na atividade de auditoria, essa dissertação propõe a construção de um framework para detecção de anomalias em bases de dados baseado na rede neural artificial Mapas auto-organizáveis - Self-Organizing Maps (SOM). Utilizando as propriedades de mapeamento da Rede SOM, o framework consiste em: (i) demonstrar que dados visualmente distantes da área de influência da rede SOM são anomalias, e (ii) estabelecer um critério, baseado em intervalo de percentil, para classificação dos dados como possíveis anomalias independentemente da região do mapa SOM em que se encontrem. Ademais, este trabalho usa a análise de trajetória SOM na função de classificador de anomalia, a fim de comparar o limiar fixo baseado na vizinhança do neurônio com o limiar baseado em intervalo de percentil. O framework proposto foi aplicado em uma base de dados real de folha de pagamento. Os resultados apresentados na dissertação mostraram que o framework conseguiu obter bons resultados neste problema.