Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
MACARIO FILHO, Valmir |
Orientador(a): |
CARVALHO, Francisco de Assis Tenório de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
UNIVERSIDADE FEDERAL DE PERNAMBUCO
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Ciencia da Computacao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/15260
|
Resumo: |
Nas aplicações tradicionais de aprendizagem de máquina, os classificadores utilizam ape- nas dados rotulados em seu treinamento. Os dados rotulados, por sua vez, são difíceis, caros, consomem tempo e requerem especialistas humanos para serem obtidos em algu- mas aplicações reais. Entretanto, dados não rotulados são abundantes e fáceis de serem obtidos mas há poucas abordagens que os utilizam no treinamento. Para contornar esse problema existe a aprendizagem semissupervisionada. A aprendizagem semissupervisio- nada utiliza dados não rotulados, juntamente com dados rotulados, com a finalidade de melhorar o desempenho dos algoritmos. A abordagem semissupervisionada, geralmente, obtém resultados melhores do que se utilizassem apenas poucos padrões rotulados em uma abordagem supervisionada ou se utilizassem apenas padrões não rotulados numa abordagem não supervisionada. Um algoritmo semissupervisionado pode se basear em algoritmos de agrupamento não supervisionado, geralmente, adicionando-se um termo ou estratégia que faz uso de informações rotuladas para guiar o processo de aprendizagem deste algoritmo. Os algoritmos de agrupamento são bastante influenciados pelo cálculo da similaridade entre dois items, ou seja, a distância entre dois itens. Quando o algoritmo semissupervisionado é um extensão de um algoritmo de agrupamento, este também é bastante influenciado por esta distância. Desse modo, distâncias adaptativas são utiliza- das para que o algoritmo tenha capacidade de se adequar a diferentes distribuições dos dados, geralmente, melhorando o desempenho em relação aos algoritmos que não utili- zam uma distância adaptativa. Este trabalho apresenta novos algoritmos de agrupamento semissupervisionado baseados no algoritmo Fuzzy C-Means que utilizam distâncias adap- tativas com ponderação automática de variáveis. Estudos experimentais no contexto da aprendizagem a partir de dados parcialmente rotulados são apresentados. Além disso, o comportamento dos algoritmos é discutido e os resultados examinados através de testes estatísticos de Friedman. Desse modo, foi possível certificar que os novos algoritmos de agrupamento semissupervisionado com distâncias adaptativas apresentam desempenho melhor que algoritmos já consolidados na literatura. |