Combinando regressão linear clusterwise e k-means com ponderação automática das variáveis explicativas

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: SILVA, Ricardo Azevedo Moreira da
Orientador(a): CARVALHO, Francisco de Assis Tenório de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Ciencia da Computacao
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/26011
Resumo: Este trabalho propõe um método de regressão linear do tipo clusterwise cujo objetivo é fornecer modelos de regressão linear baseados em grupos homogêneos de observações em relação às variáveis explicativas e que são bem ajustados em relação à variável de resposta. Para atingir esse objetivo, este método combina o método regressão linear do tipo clusterwise padrão e o método de agrupamento K-means com a ponderação automática das variáveis explicativas. Os pesos das variáveis explicativas mudam em cada iteração do algoritmo e são diferentes de uma variável para outra. Assim, este método é capaz de selecionar as variáveis relevantes na busca por clusters homogêneos em relação às variáveis explicativas. Por fim, uma vez que ele aprende simultaneamente um protótipo de grupo e um modelo de regressão linear para cada cluster, ele é capaz de atribuir um modelo de regressão apropriado para uma observação desconhecida com base na sua descrição através de suas variáveis explicativas. Experimentos com conjuntos de dados sintéticos e reais corroboram a utilidade do método proposto.