Omissões da aplicação normal de Gauss e o teorema de Mo-Osserman

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Ferreira de Oliveira, Darlan
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/7510
Resumo: Neste trabalho mostramos alguns dos principais resultados acerca do número de pontos omitidos pela aplicação normal de Gauss de superfícies mínimas regulares completas. Começamos com uma das versões do teorema de Bernstein e citamos os resultados conseguidos, no sentido de seu melhoramento, por Osserman, Xavier e Fujimoto. Por fim introduzimos o teorema de Mo-Osserman o qual se caracteriza como uma extensão do teorema de Fujimoto