Detalhes bibliográficos
Ano de defesa: |
2006 |
Autor(a) principal: |
Ferreira de Oliveira, Darlan |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/7510
|
Resumo: |
Neste trabalho mostramos alguns dos principais resultados acerca do número de pontos omitidos pela aplicação normal de Gauss de superfícies mínimas regulares completas. Começamos com uma das versões do teorema de Bernstein e citamos os resultados conseguidos, no sentido de seu melhoramento, por Osserman, Xavier e Fujimoto. Por fim introduzimos o teorema de Mo-Osserman o qual se caracteriza como uma extensão do teorema de Fujimoto |