Competição de Modelos para Previsão de Mercado de Energia Elétrica em Curto e Longo Prazo

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Lacerda Moura, Wlademir
Orientador(a): Ribeiro Barbosa de Aquino, Ronaldo
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/5119
Resumo: Após as mudanças ocorridas, com a reestruturação do mercado de energia ao final da década de 90, a previsão de mercado veio ganhando destaque cada vez maior, com ênfase nos processos de planejamento do setor, modicidade tarifária e contratação de energia elétrica, onde se estabelece um limite que caso venha a ser rompido, poderá gerar prejuízos às distribuidoras de energia elétrica. Dessa forma, este trabalho visa encontrar o modelo mais adequado à série histórica de Energia Distribuída da CELPE (Companhia Energética de Pernambuco). Foram feitas simulações para curto prazo, com dados mensais no horizonte de doze meses à frente e longo prazo, com dados anuais e horizonte de quatro anos. Para o curto prazo foram testadas as metodologias de Amortecimento Exponencial, Box & Jenkins, Modelos Estruturais e Redes Neurais Artificiais, sendo testados vários modelos para cada aplicação. No longo prazo as metodologias utilizadas foram as de Regressão Dinâmica e o ANFIS. Ao final foram feitas comparações através do MAPE (Erro Médio Absoluto Percentual), sendo o melhor modelo o que obteve o menor valor de MAPE