Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
ALBUQUERQUE, Jonata Campelo de |
Orientador(a): |
NÓBREGA NETO, Otoni |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Engenharia Eletrica
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/16837
|
Resumo: |
Nesta dissertação se propõe modelos de previsão de geração eólica baseados em técnicas de Inteligência Artificial (IA), tais como aplicações de Redes Neurais Artificiais (RNAs) e Sistemas de Inferência Fuzzy (SIFs). Tais previsões foram realizadas de forma horária, sendo os horizontes de 1h à 24h, classificando os modelos como previsores de curto prazo. Atrelada à presciência respectiva de cada modelo de entrada, estão as predições de velocidades médias ou velocidades médias e direções médias do vento. Estas são utilizadas como entradas para modelos de curva de potência dos parques eólicos em análise, nos quais dependendo do modelo em questão, esta poderá ser uma RNA ou um SIF. Tal aplicação é feita para dois parques reais descritos ao longo deste trabalho. Ao fim, faz-se uma comparação entre tais modelos, na qual o desempenho obtido revela-se bastante competitivo em termos de acurácia nas previsões de geração eólica dos SIFs em relação às RNAs |