Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
SÁ, Hially Rodrigues de |
Orientador(a): |
PRUDÊNCIO, Ricardo Bastos Cavalcante |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/2719
|
Resumo: |
A Predição de Relacionamentos (Link Prediction) é uma importante atividade no campo da Análise em Redes Sociais. Esta atividade se refere em predizer o surgimento de relacionamentos futuros entre os nós em uma rede social. Uma das estratégias para realizar as predições se dá por meio da aprendizagem supervisionada. Neste caso, a predição é tratada como um problema de classificação binária. Os atributos preditores são as métricas computadas para indicar a proximidade ou similaridade de um par de nós. As classes positiva e negativa representam, respectivamente, a presença e ausência de um relacionamento entre esse par no futuro. Apesar de ser uma abordagem bem consolidada na literatura, a maioria das pesquisas que emprega a aprendizagem supervisionada utiliza apenas redes sem pesos. Atribuir pesos para os relacionamentos da rede é uma maneira de expressar a força dos relacionamentos entre os nós, o que pode potencialmente fornecer informações úteis para a predição. Estudos têm demonstrado que a utilidade de empregar pesos nos relacionamentos com abordagens não supervisionadas ainda é controversa, enquanto este ponto é pouco explorado na abordagem supervisionada. Neste contexto, o objetivo principal deste trabalho foi investigar se adotar pesos nos relacionamentos entre os nós contribui para a otimização do desempenho da predição supervisionada. A avaliação se deu pela comparação de diferentes algoritmos de classificação em redes com e sem pesos. De modo geral, os resultados com a predição supervisionada em duas redes de coautorias revelaram que uma pequena, mas relevante melhoria de desempenho foi obtida quando os pesos foram considerados |