Predição de coautorias em redes sociais acadêmicas 

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Maruyama, William Takahiro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/100/100131/tde-07052016-232625/
Resumo: Atualmente, as redes sociais estão ganhando cada vez mais destaque no dia-a-dia das pessoas. Nessas redes são estabelecidos diferentes relacionamentos entre entidades que compartilham alguma característica ou objetivo em comum. Diversas informações sobre a produção científica nacional podem ser encontradas na Plataforma Lattes, que é um sistema utilizado para o registro dos currículos dos pesquisadores no Brasil. A partir dessas informações é possível construir uma rede social acadêmica, na qual as relações entre os pesquisadores representam uma parceria na produção de uma publicação (coautoria) - um link. Na análise de redes sociais existe uma linha de pesquisa conhecida como predição de link ou de relacionamentos, que tem como objetivo identificar relacionamentos futuros. Essa tarefa pode favorecer a comunicação entre os usuários e otimizar o processo de produção científica identificando possíveis colaboradores. Este projeto analisou a influência de diferentes atributos encontrados na literatura e filtros de dados para prever relações de coautoria nas redes sociais acadêmicas. Foi abordado dois tipos de problemas na predição de relacionamentos, o problema geral que analisa todos os possíveis relacionamentos de coautoria e o problema de novas coautoria que refere-se aos relacionamentos de coautorias inéditas na rede. Os resultados dos experimentos foram promissores para o problema geral de predição com a combinação de atributos e filtros utilizados. Contudo, para o problema de novas coautorias, devido à sua maior complexidade, os resultados não foram tão bons. Os experimentos apresentados avaliaram diferentes estratégias e analisaram o custo e benefício de cada uma. Conclui-se que para lidar com o problema de predição de coautorias em redes sociais acadêmicas é necessário analisar as vantagens e desvantagens entre as estratégias, encontrando um equilíbrio entre a revocação da classe positiva e a acurácia geral