Teorema de geometrização para girassóis de grafos com valência mínima três

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Ferreira Santos, Wagner
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/7081
Resumo: Dado um grafo G conexo e com valência mínima três, apresentamos um algoritmo que obtém o mapeamento de G numa superfície fechada S de tal forma que G possui apenas uma face. Ao dual G* assim obtido, chamamos girassol de G. Particionamos então as arestas do girassol em arestas de fronteira e cordas internas. As cordas internas não se cruzam e as arestas de fronteira definem um polígono P super-regular com número par de lados. A este polígono super-regular com cordas internas, adicionamos as arestas primais de G, obtidas pela dualização de G* e apresentamos geometricamente (geometrizamos) o domínio fundamental (G,G*). Aplicando a P reflexões hiperbólicas, obtemos o mergulho periódico do recobrimento universal de GUG* no plano hiperbólico