Identificação automática de restrições alimentares em receitas culinárias através de técnicas de aprendizagem de máquina

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: BRITTO, Larissa Feliciana da Silva
Orientador(a): LUDERMIR, Teresa Bernarda
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Ciencia da Computacao
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/50730
Resumo: Com o avanço e popularização da internet e de tecnologias, como os smartphones, a culinária sofreu uma revolução, na qual as receitas se tornaram um dos tópicos mais aces- sados e comentados da Web. Apesar da facilidade de acesso trazida pela internet, encontrar a receita ideal ainda é uma tarefa árdua, especialmente para pessoas que possuem algum tipo de restrição alimentar. A identificação correta dos alimentos que infrinjam determinada restrição é fundamental para saúde e bem estar do indivíduo que segue uma dieta restritiva. Este trabalho tem como principal objetivo realizar a identificação automática de alimentos que infrinjam restrições alimentares, através da classificação de receitas dietéticas, utilizando técnicas de Aprendizagem de Máquina. Essa classificação pode ser aplicada para facilitar a busca de usuários de sites de receitas que possuem algum tipo de restrição alimentar. Alguns dos principais modelos da literatura de classificação de receitas culinárias são escolhidos para avaliação, no intuito de apurar qual deles seria o mais adequado para execução da tarefa de identificação de dietas e restrições em receitas. Os seguintes classificadores são adotados: Árvore de Decisão (AD), Bidirectional Encoder Representations from Transformers (BERT), Floresta Aleatória (FA), K-Vizinhos Mais Próximos (K-NN), Naive Bayes (NB), Perceptron Multicamadas (MLP), Regressão Logística (RL) e Máquinas de Vetores de Suporte (SVM). As listas de ingredientes, modos de preparo, títulos e descrições das receitas são avaliados, individualmente e combinados, com o propósito da seleção dos conjuntos de dados que mais contribuem para o processo de aprendizado dos classificadores. Esses dados se encontram em formato textual, sendo necessário o emprego de técnicas de Processamento de Linguagem Na- tural para a extração de características dos documentos da base. Experimentos são realizados, nos quais os classificadores selecionados são executados, e seus desempenhos são mensurados e comparados uns com os outros. Os resultados experimentais são avaliados empiricamente, e através de métodos estatísticos (teste de hipóteses de Friedman/Nemenyi). A avaliação aponta o bom desempenho dos modelos adotados na tarefa de classificação de receitas dieté- ticas, com destaque para os classificadores Regressão Logística, BERT e MLP. Os resultados obtidos indicam ainda que as características mais adequadas para a classificação podem variar de restrição para restrição.