Um modelo de recomendação de recursos educacionais baseado em aprendizagem de máquina para autorregulação da aprendizagem
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/34472 |
Resumo: | O aumento da educação à distância no Brasil tem estimulado o desenvolvimento de soluções para redução da evasão nos cursos e melhoria de desempenho dos estudantes. Dados gerados de interações em ambientes virtuais de aprendizagem (AVA) têm sido analisados na busca por padrões que auxiliem no acompanhamento da aprendizagem. AVAs têm sido aprimorados considerando peculiaridades existentes no perfil dos estudantes, para indicação de atividades e/ou estratégias de aprendizagem que melhorem seu desempenho. Neste contexto, este trabalho investiga e desenvolve uma solução de recomendação de atividades de aprendizagem baseada em padrões de autorregulação em AVAs, fundamentada em algoritmos de aprendizagem de máquina e mineração de dados. Para tal, um mapeamento sistemático de literatura foi realizado, possibilitando identificar tendências e lacunas de pesquisa na área. A partir de tais achados, foi construída uma solução em software de recomendação de recursos educacionais que possibilita (1) analisar o desempenho dos estudantes a partir de uma pontuação; (2) extrair características comportamentais associadas à autorregulação que influenciam no desempenho; e (3) recomendar ações que promovam a melhoria do desempenho. Experimentos realizados com uma base real de uma universidade brasileira com mais de 30.000 estudantes, e várias métricas de desempenho (AUROC, Precisison, Recall, F-measure, Kappa), indicam que a solução foi capaz de capturar o perfil de aprendizagem com performance superior a 0,89 (AUROC). Além disso, foi possível extrair características comportamentais com performance superior a 0,88 (AUROC) e elaborar um conjunto de recomendações para melhoria da aprendizagem do estudante, a exemplo de textos e/ou vídeos relacionados aos fóruns onde o estudante não interagiu, incentivando sua participação nessas discussões. |