Detalhes bibliográficos
Ano de defesa: |
2004 |
Autor(a) principal: |
Fraga do Amaral e Silva, Eduardo |
Orientador(a): |
de Almeida Barros, Flávia |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/2498
|
Resumo: |
Existe atualmente uma gigantesca quantidade de informações disponibilizada em formato de texto na Internet e nas redes das grandes corporações. Essas informações encontram-se em um formato não estruturado, dificilmente manipulável por programas de computador. A Extração de Informação (EI) tem como objetivo transformar documentos textuais em um formato estruturado, mapeando a informação contida em um documento em uma estrutura tabular. Tal estrutura é mais facilmente tratável por programas de computador, possibilitando assim a sua utilização por variadas aplicações inteligentes . Dentro da Inteligência Artificial, vemos duas abordagens para tratar o problema da EI: os sistemas baseados em conhecimento e a aprendizagem automática. O trabalho apresentado tem como objetivo a construção de um sistema para extrair informações a partir de textos contendo citações científicas (ou referências bibliográficas) através de uma abordagem baseada em aprendizagem automática. Dentre as diversas técnicas existentes, escolhemos tratar o problema através de uma abordagem híbrida, que combina o uso de técnicas de classificação de textos com os Modelos de Markov Escondidos (HMM). Esta combinação mostrou resultados superiores aos obtidos usando exclusivamente as técnicas de classificação e sua idéia básica é gerar com o uso das técnicas de classificação de textos para EI uma saída inicial para o sistema e refiná-la depois por meio de um HMM. Experimentos realizados com um conjunto de teste contendo 3000 referências resultaram em uma precisão de 87,48%. |