Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
FIRMINO, Paulo Renato Alves |
Orientador(a): |
DROGUETT, Enrique Andrés López |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/4950
|
Resumo: |
Ao longo dos anos, modelos Bayesianos vêm recebendo atenção especial da academia e em aplicações principalmente por possibilitarem uma combinação matemática entre corpos de evidência subjetiva e empírica. A metodologia de integração de Monte Carlo via cadeias de Markov é uma das principais classes de algoritmos para computar estimativas marginais a partir de modelos Bayesianos. Entre os métodos de integração de Monte Carlo via cadeias de Markov, o algoritmo de Metropolis-Hastings merece destaque. Em resumo, para o conjunto de d variáveis (ou componentes) do modelo Bayesiano, X = (X1, X2, , Xd), tal algoritmo elabora uma cadeia de Markov onde cada estado visitado é uma realização de X, x = (x1, x2, , xd), amostrada das distribuições de probabilidades condicionais das variáveis do modelo, f(xi| x1, x2, , xi-1, xi+1, , xd). Quando a simulação é governada por distribuições cuja amostragem direta é viável, o algoritmo de Metropolis-Hastings converge para o método de Gibbs e técnicas de redução de variância tais como Rao-Blackwellization podem ser adotadas. Caso contrário, diante de distribuições cuja amostragem direta é inviável, Rao-Blackwellization é possível a partir do método de griddy-Gibbs, que recorre a funções aproximadas. Esta tese propõe uma variante de griddy-Gibbs que pode ser também classificada como uma extensão do algoritmo de Metropolis-Hastings (diferentemente do método de griddy-Gibbs tradicional que descarta a possibilidade de se rejeitar os valores amostrados ao longo das simulações). Além disso, algoritmos de integração numérica adaptativos e técnicas de agrupamento, tais como o método adaptativo de Simpson e centroidal Voronoi tessellations, são adotados. Casos de estudo apontam o algoritmo proposto como uma boa alternativa a métodos existentes, promovendo estimativas mais precisas sob um menor consumo de recursos computacionais em muitas situações |