Método adaptativo de Markov Chain Monte Carlo para manipulação de modelos Bayesianos

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: FIRMINO, Paulo Renato Alves
Orientador(a): DROGUETT, Enrique Andrés López
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/4950
Resumo: Ao longo dos anos, modelos Bayesianos vêm recebendo atenção especial da academia e em aplicações principalmente por possibilitarem uma combinação matemática entre corpos de evidência subjetiva e empírica. A metodologia de integração de Monte Carlo via cadeias de Markov é uma das principais classes de algoritmos para computar estimativas marginais a partir de modelos Bayesianos. Entre os métodos de integração de Monte Carlo via cadeias de Markov, o algoritmo de Metropolis-Hastings merece destaque. Em resumo, para o conjunto de d variáveis (ou componentes) do modelo Bayesiano, X = (X1, X2, , Xd), tal algoritmo elabora uma cadeia de Markov onde cada estado visitado é uma realização de X, x = (x1, x2, , xd), amostrada das distribuições de probabilidades condicionais das variáveis do modelo, f(xi| x1, x2, , xi-1, xi+1, , xd). Quando a simulação é governada por distribuições cuja amostragem direta é viável, o algoritmo de Metropolis-Hastings converge para o método de Gibbs e técnicas de redução de variância tais como Rao-Blackwellization podem ser adotadas. Caso contrário, diante de distribuições cuja amostragem direta é inviável, Rao-Blackwellization é possível a partir do método de griddy-Gibbs, que recorre a funções aproximadas. Esta tese propõe uma variante de griddy-Gibbs que pode ser também classificada como uma extensão do algoritmo de Metropolis-Hastings (diferentemente do método de griddy-Gibbs tradicional que descarta a possibilidade de se rejeitar os valores amostrados ao longo das simulações). Além disso, algoritmos de integração numérica adaptativos e técnicas de agrupamento, tais como o método adaptativo de Simpson e centroidal Voronoi tessellations, são adotados. Casos de estudo apontam o algoritmo proposto como uma boa alternativa a métodos existentes, promovendo estimativas mais precisas sob um menor consumo de recursos computacionais em muitas situações