Mapeamento de região navegável a partir de um sistema SLAM e segmentação de imagem

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: MELO, Mirella Santos Pessoa de
Orientador(a): BARROS, Edna Natividade da Silva
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Ciencia da Computacao
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/41990
Resumo: Agentes robóticos que se utilizam de algoritmos de localização e mapeamento simultâneos (SLAM) realizam a construção incremental do mapa de um ambiente desconhecido enquanto, simultaneamente, determinam sua localização dentro desse mapa. Estes são chamados de sistemas SLAM visual (vSLAM) quando se utilizam de dados proveniente de uma câmera e, pela forma com que as imagens são interpretadas, são categorizados em método direto ou indireto. O vSLAM de método indireto é eficiente, rápido e pode oferecer um sistema de localização preciso; por outro lado, representa o ambiente mapeado através de uma nuvem de pontos esparsa, sendo esta imprópria para o planejamento de rotas. Portanto, nosso trabalho teve como objetivo desenvolver um módulo capaz de associar o mapeamento esparso do vSLAM indireto com o planejamento de rotas para navegação, tendo como prioridade o baixo custo computacional, fazendo uso apenas de um sensor de câmera estéreo. A representação adotada para modelar o ambiente é um mapa de grade de ocupação 2D - OGM 2D, uma das opções predominantemente utilizadas na robótica. Para criar o OGM, associamos o estágio de mapeamento do vSLAM com uma técnica de segmentação de chão. A proposta representa um módulo complementar que além de transformar a nuvem de pontos esparsa em um OGM 2D, também resulta numa nuvem de pontos segmentada entre chão e não-chão. Avaliações sobre o mapa gerado foram feitas em ambientes sintéticos e reais, considerando algoritmos de planejamento de rota, sobreposição de mapas e métricas computacionais. Resultados revelam mapas com alta precisão enquanto exigem baixíssimo acréscimo do consumo de memória, e tempo de processamento que permite que a aplicação seja executada junto ao SLAM em tempo real. O mapa gerado permite um elo entre um algoritmo SLAM de mapeamento esparso e atividades de navegação.