Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Guapacha, Jovanny Bedoya [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/152092
|
Resumo: |
A criação de robôs que podem operar autonomamente em ambientes controlados e não controlados tem sido, um dos principais objetivos da robótica móvel. Para que um robô possa navegar em um ambiente interno desconhecido, ele deve se localizar e ao mesmo tempo construir um mapa do ambiente que o rodeia, a este problema dá-se o nome de Localização e Mapeamento Simultâneos- SLAM. Tem-se como proposta neste trabalho para solucionar o problema do SLAM, o uso de um sensor RGB-D, com 6 graus de liberdade para perceber o ambiente, o qual é embarcado em um robô. O problema do SLAM pode ser solucionado estimando a pose - posição e orientação, e a trajetória do sensor no ambiente, de forma precisa, justificando a construção de um mapa em três dimensões (3D). Esta estimação envolve a captura consecutiva de frames do ambiente fornecidos pelo sensor RGB-D, onde são determinados os pontos mais acentuados das imagens através do uso de características visuais dadas pelo algoritmo ORB. Em seguida, a comparação entre frames consecutivos e o cálculo das transformações geométricas são realizadas, mediante o algoritmo de eliminação de correspondências atípicas, bPROSAC. Por fim, uma correção de inconsistências é efetuada para a reconstrução do mapa 3D e a estimação mais precisa da trajetória do robô, utilizando técnicas de otimização não lineares. Experimentos são realizados para mostrar a construção do mapa e o desempenho da proposta. |