Detalhes bibliográficos
Ano de defesa: |
1999 |
Autor(a) principal: |
Sidney Gouveia Carneiro da Cunha, Uraquitan |
Orientador(a): |
Lisboa Ramalho, Geber |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/2556
|
Resumo: |
Motivados pela demanda do mercado de software musical, bem como pelo interesse científico envolvido no problema de previsão de séries temporais [Weigend, 1993], desenvolvemos um ambiente capaz de realizar previsões de acordes de canções de Jazz em tempo real. Nós propusemos uma arquitetura híbrida original que tem como base uma rede neural MLP-backpropagation atuando de forma concorrente com um rastreador de seqüências repetidas de acordes. A rede neural faz um aprendizado prévio a partir de diversos exemplos de canções, extraindo os padrões curtos de seqüências de acordes típicas. O sistema rastreador funciona capturando em tempo real as repetições (refrões, estrofes, etc.) dentro de uma dada canção, as quais escapariam à rede neural. Trata-se da problemática geral de aprendizado a priori versus aprendizado situado, em tempo real. Com a arquitetura híbrida proposta e uma representação rica do acorde musical, obtivemos resultados muito acima dos registrados na literatura dedicada ao problema |