Compactificação de Poincaré e aplicações à Mecânica Celeste
Ano de defesa: | 2002 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Matematica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/40231 |
Resumo: | Este trabalho consiste em descrever a técnica, conhecida na literatura como a Com pactificação de Poincaré, que possibilita fazer um estudo qualitativo de certos campos vetoriais. Aplicaremos tal método em alguns problemas da Mecânica Celeste, particular mente em alguns casos do problema de -corpos, como por exemplo o problema de Kepler Linear e Planar, o problema de três corpos colineares e também o problema de Hill. O problema de -corpos busca descrever a dinâmica de -corpos de massas pré determina das, sujeitos a gravitação universal e a lei da gravidade. Tal problema, em sua mais ampla generalidade, segue em aberto, é um grande desafio da área de mecânica celeste e por conta disso, estudos de casos particulares, como os que abordaremos nesse trabalho, são as grandes fontes de pesquisa do problema. A compactificação de Poincaré, objeto cen tral desse trabalho, se revelou de grande utilidade para a abordagem de tais problemas. Campos de vetores polinomiais e definidos por funções homogêneas comporão também os elementos centrais da dissertação. |