Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
APARCANA ORELLANA, Aldryn Oscar |
Orientador(a): |
CUEVAS, Claudio |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Matematica
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/30373
|
Resumo: |
O Cálculo de Ordem Não inteira, tradicionalmente conhecido como cálculo fracionário é um ramo da análise matemática que estuda as possibilidades de usar potências de números reais ou potências de números complexos em operadores diferenciáis e o operador de integração. Há vários motivos para analisarmos esta questão. Um é que, deste modo o semigrupo das potências Dn na variável discreta n é vista como um semigrupo contínuo (espera-se) que os parâmetros a onde é um número real. Semigrupos contínuos pré-valentes em Matemática são de interesse teórico. Diz-se que fração é então o mesmo que o expoente, desde que precise ser um racional, mas que a expressão cálculo fracionário torne-se padrão por tradição. Utilizando ferramentas de Analise Funcional e Topologia, estudamos propiedades de limitação e periodicidade assintótica de soluções brandas para equações diferenciais fracionárias em espaços de Banach. Provamos que o conjunto das soluções brandas é compacto em certos espaços. Finalmente, aplicamos nossos resultados ao estudo de sistemas concretos que são modelados por equações de evolução fraccionaria. |