Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Theodoro, Micaeli Mendola |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/217901
|
Resumo: |
Este trabalho apresenta uma revisão de modelos matemáticos que tratam da dinâmica do espalha- mento da COVID-19, além disso apresenta aspectos gerais da teoria do Cálculo de Ordem Não Inteira, tradicionalmente conhecido como Cálculo Fracionário (CF), incluindo métodos numéri- cos e estratégias computacionais de estimação de parâmetros. Desta forma, a presente dissertação propõe dois modelos SAIRD (suscetíveis-assintomáticos-sintomáticos-recuperados-mortos) e SAIRS (suscetíveis-assintomáticos-sintomáticos-recuperados), clássico e fracionário. No modelo SAIRD, a partir de medidas estatísticas, como erro quadrático médio (EQM), o coeficiente de correlação intraclasse (ICC) e o erro percentual absoluto médio (MAPE), avaliamos que as estratégias computacionais fracionárias se mostraram qualitativamente mais precisas que as clássicas. |